playingwithfusion.com

Features

- Negative common-mode range handling for grounded thermocouples (-1.5 6V)
- Available for J and K type thermocouples
- Cold-junction compensated
- Protected for high humidity environments
- Wide supply voltage range (7-26V)
- 0-5V output, 4mV / °C output
- +/- 3°C initial accuracy
- -250-1000°C Temperature range
- Ttc = ((Vout –1.0V) / 0.004)°C (see below for nonlinearity information)
- Mini thermocouple connectors standard, other options available upon request
- 5" stub harness for power and output
- Mounting flange for direct mounting
- Small 2.33" x 4.33" footprint
- RoHS compliant

Applications

- Automotive data acquisition (EGT, etc)
- Racing instrumentation
- Industrial and Chemical applications
- Research instrumentation
- Oven temperature measurements
- Brewing

Description

FDQ-10001 analog thermocouple amplifier modules are designed to convert very low voltage signals from J- and K-type thermocouples to a highly-linear, 0.004V/°C output with a 1.0 V offset (0°C = 1V output). The output signal can be read by a multitude of standard measurement devices, including digital multimeters, data acquisition systems, or even analog input on an Arduino. The standard output signal range of 0-5V covers a -250°C - 1,000°C temperature range with both J- and K-type thermocouples. To get the best accuracy across an extended operating range, nonlinearity correction may be desirable. Temperature correction tables are available in this document to enable this.

The wide, 7-26V DC supply voltage range is designed to support a wide variety of applications, from racing and automotive projects to industrial temperature measurement. See Table 1 for the optimized operating range for the different sensor options.

Table 1: Sensor Temperature Ranges

Thermo-	Optimized Temperature Range	
couple	Ambient Temperature	Measurement
Туре	(board temperature)	Junction
J	0°C to 50°C	Full J type range
ĸ	0°C to 50°C	Full K type range
	couple	couple Ambient Temperature Type (board temperature) J 0°C to 50°C

'sensors optimized for ambient environments from 25-100°C available upon request

In addition, analog filtering is included to remove unwanted EMI on the input stage of

the conditioner. Common mode filtering with a cutoff frequency of 1 kHz is included, as well as 50 Hz differential signal filtering. For fault detection, an open input results in an output signal that floats high.

Table 2:	: Standard	Operating	Parameters
----------	------------	-----------	------------

Parameter	Rating
Supply Voltage	7.0 - 26.0∨
Operating Temperature (Tamb)	0°C to 50°C
Absolute Accuracy (initial)	3°C
Storage Temperature	-40°C to 125°C

Performance Characteristics

The FDQ-10001/X devices are designed to output a linear signal based on an input from J-Type or K-Type thermocouples and include cold-junction compensation. As a result, the output of the SEN-30101/XX can be approximated as linear over a specified window, with degradation of the estimate outside of this window. See Table 3 for details.

Table 3: Sensor Temperature Linearization

	Thermo-	Measurement Jcn Temperature Ranges	
	couple		Correction tables
PWF Part No.	Туре	correction applied	applied
FDQ-10001-J	J	-35°C to 95°C	Full J type range
FDQ-10001-K	К	-25°C to 400°C	Full K type range

As such, one of two methods should be used to handle the output voltage from the sensors. The method chosen will depend on linearity accuracy requirements as well as the required operational range of the input signal. Absolute accuracy is separate from the linearity accuracy, and can be found in Table 4.

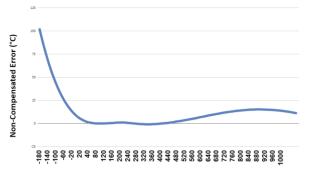
In one application example, if a +/- 2°C linearity accuracy is acceptable and the sensing application will stay within the

windows shown in Table 2, temperature conversion is straightforward and calculated based on output voltage with the formula:

Ttc = ((Vout - 1.00) / 0.004)°C

This formula applies for both J-Type and Ktype sensors. This formula is also fitting for applications with less stringent linearity accuracy requirements and wider operating ranges. Often, reference measurements or applications where difference between two temperatures are what is important meet this definition. See Figure 1 for accuracy and Figure 2 for sensor response across the input temperature operating range.

If linearity accuracy provided by the formula in the previous example is not acceptable, there is an alternative method that corrects for linearity error. Specifically, correction tables can be used to correct the high-order non-linearity across the sensor's operating range. See Table 5 for this information (calculated based on Analog Devices AN-1087). This correction is directly related to the high-order response characteristics of the respective


thermocouples.

playingwithfusion.com


FDQ-10001: 8-Channel Analog Thermocouple Conditioner with Grounded Thermocouple Handling

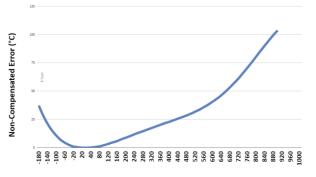
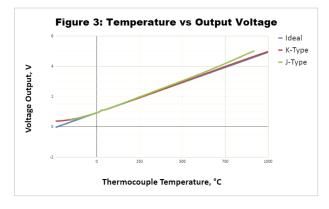


Figure 1: K-Type Temperature Error vs Probe Temperature



Actual Probe Temperature (°C)

Actual Probe Temperature (°C)

Parameter	Rating
Supply Voltage (peak)	30V (short pulse)
Reverse Supply Protection	-30V across supply pins
Output Short Circuit Duration	Indefinite
Operating Temperature	-25°C to 85°C
Storage Temperature	-40°C to 125°C

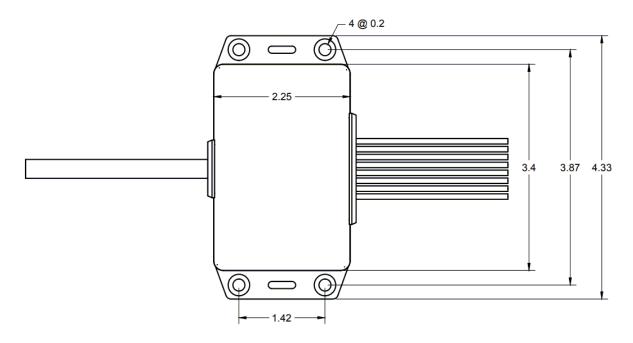
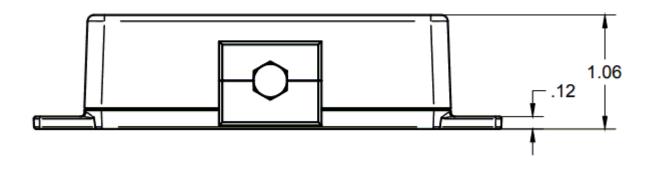
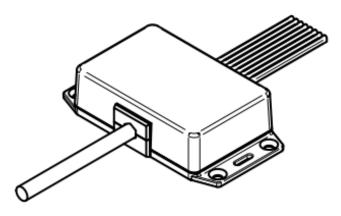

Table 5: Correction Tables for FDQ-10001/X Thermocouple Sensors				
Measurement	Ideal Output (V)	Actual O	Actual Output (V)	
Junction		FDQ-10001	FDQ-10001	
Temperature (°C)	FDQ-10001/(J/K)	K-Type	J-Type	
-260	-0.04	0.3712		
-240	0.04	0.3808		
-220	0.12	0.3992		
-200	0.2	0.4248		
-180	0.28	0.4584	0.4288	
-160	0.36	0.4984	0.4736	
-140	0.44	0.5448	0.5248	
-120	0.52	0.5968	0.5816	
-100	0.6	0.6544	0.6432	
-80	0.68	0.716	0.708	
-60	0.76	0.7824	0.7776	
-40	0.84	0.8528	0.8496	
-20	0.92	0.9256	0.924	
0	1	1.0024	1.0016	
20	1.08	1.08	1.08	
25	1.1	1.1	1.1	
40	1.16	1.16	1.1608	
60	1.24	1.2408	1.2424	
80	1.32	1.3216	1.3248	
100	1.4	1.4032	1.4088	
120	1.48	1.484	1.4936	
140	1.56	1.564	1.5784	
160	1.64	1.6424	1.6632	
180	1.72	1.7208	1.7496	
200	1.8	1.7992	1.8352	
220	1.88	1.8776	1.9208	
240	1.96	1.9568	2.0072	
260	2.04	2.036	2.0928	
280	2.12	2.1168	2.1784	
300	2.2	2.1976	2.264	
320	2.28	2.2792	2.3496	
340	2.36	2.3608	2.4352	
360	2.44	2.4424	2.5208	
380	2.52	2.5248	2.6064	
400	2.6	2.608	2.6912	
420	2.68	2.6904	2.7768	
440	2.76	2.7736	2.8624	
460	2.84	2.8568	2.948	
480	2.92	2.94	3.0336	
500	3	3.0232	3.12	
520	3.08	3.1072	3.2072	
540	3.16	3.1904	3.2944	

Table 5: Correction Tables for FDQ-10001/X Thermocouple Senso Measurement Ideal Output (V) Actual Output (V)


Measurement	Ideal Output (V)	Actual O	utput (V)
Junction	SEN30101/K1	SEN30101 /K1	SEN30101 /J1
Temperature (°C)	SEN30101/J1	K-Type	J-Type
560	3.24	3.2744	3.3832
580	3.32	3.3576	3.472
600	3.4	3.4408	3.5624
620	3.48	3.524	3.6528
640	3.56	3.6072	3.7448
660	3.64	3.6896	3.8384
680	3.72	3.772	3.9328
700	3.8	3.8544	4.0288
720	3.88	3.936	4.1248
740	3.96	4.0176	4.2232
760	4.04	4.0992	4.3216
780	4.12	4.18	4.4208
800	4.2	4.2608	4.5208
820	4.28	4.3408	4.6208
840	4.36	4.42	4.72
860	4.44	4.4992	4.8192
880	4.52	4.5784	4.9176
900	4.6	4.6568	5.0144
920	4.68	4.7352	
940	4.76	4.8128	
960	4.84	4.8904	
980	4.92	4.9672	
1000	5	5.044	

Appendix 1: Mech Drawing (Top View)



Appendix 2: Mech Drawing (Side View)

Appendix 3: Wiring

Notes:	
Wiring Bundle	
Red:	Vsupply (7-24V)
Black:	Ground
White:	TC1
Blue:	TC2
Yellow:	TC3
Green:	TC4
Gray:	TC5
Purple:	TC6
Orange:	TC7
Brown:	TC8
Wires are strand	ed 20AWG
Minimum 5" wire	stub length
Wire bundle is w	rapped with wire braid
Thermocouple In	puts
Mini-style blade	connectors installed standard
24AWG stranded	d TC wire
Minimum 5" TC	wire stub length

Revision History

Date	Author	Notes
4/1/2019	J. Steinlage	Original release
6/1/2020	J. Steinlage	Update mechanical data, wire colors.